生物冶金与生态修复

冶金模式微生物 Acidithiobacillus ferrooxidans 表面质 子吸附特性的研究

周姗1, 栗树珍1, 钟慧2, 贺治国1

1. 中南大学 资源加工与生物工程学院, 生物冶金教育部重点实验室, 湖南 长沙 410083; 2. 中南大学 生命科学学院, 湖南 长沙 410013

中图分类号:Q939.97 文献标识码:A 文章编号:1001-0076(2020)04-0001-08 DOI:10.13779/j.cnki.issn1001-0076.2020.04.001

摘要 为了探究生物冶金过程及矿山酸性废水中的关键微生物 Acidithiobacillus ferrooxidans 的表面质子吸附机理,该研究通过酸碱滴定、ProtoFit 模拟、电泳迁移率测定及傅里叶变换衰减全反射红外光谱法(ATR – FTIR)系统地揭示不同能源(S⁰、Fe²⁺、FeS₂)和离子强度(0.001~0.1 mol/L NaNO₃)对 A. ferrooxidans 表面性质的影响及参与质子化/去质子化反应的关键官能团。结果表明:三位点的 Donnan 壳静电模型能较好地适用于分析 A. ferrooxidans 的表面酸碱性质;能源和离子强度均影响 A. ferrooxidans 的表面酸碱性质;在广泛的 pH 值范围内(2~10),不同能源培养的 A. ferrooxidans 在不同离子强度下均呈负电性;羧基、磷酸基和酰胺基是质子化/去质子化过程的关键官能团。该研究表明了 A. ferrooxidans 在吸附重金属方面的重要应用潜力,并对阐明 A. ferrooxidans 的表面质子吸附机理具有重要意义。

关键词 A. ferrooxidans;能源;自动电位滴定;吸附;表面性质

引 言

A. ferrooxidans 是一种革兰氏阴性、嗜酸、自养型 细菌,能够利用氧作为电子受体,将亚铁氧化为三价 铁,或将单质硫/还原性无机硫化合物氧化为硫酸盐而 获得生长所需的能量^[1]。这种特殊的代谢特征使其成 为酸性矿山废水(Acid mine drainage)形成和金属硫化 矿生物浸出生产中的关键微生物之一^[1],被作为生物 冶金模式微生物^[2,3]。A. ferrooxidans 细胞表面的酸碱 性质在其与金属硫化矿的黏附、对金属硫化矿的氧化 以及对酸性矿山废水中重金属离子的吸附方面起着至 关重要的作用。

近年来,通过细胞在矿物表面的吸附行为研究对 A. ferrooxidans 细胞的表面性质有了一定了解^[4-6],如 Zhu等人研究发现 S⁰、Fe²⁺或 CuFeS₂ 培养的 A. ferrooxidans 表面疏水性、净电荷及与黄铜矿间的吸附力不 同,从而对黄铜矿中铜的浸出效率也不同^[5],Li等人研 究发现细胞表面的胞外多聚物(EPS)决定着细胞的表面性质,从而决定了 A. ferrooxidans 细胞在黄铜矿表面的吸附行为^[6]。找出不同培养条件及离子强度如何影响 A. ferrooxidans 细胞的表面特性,将有助于阐明 A. ferrooxidans 细胞对酸性矿山废水中重金属吸附和迁移的影响,并通过改变细胞表面性质提高 A. ferrooxidans 对金属硫化矿的浸出效率,然而目前相关研究仍然缺乏。

模拟细菌细胞壁表面的质子模型,对理解细菌表面发生的反应和物质传输有重要作用^[8]。目前已有许多针对细菌细胞壁质子化反应的电位滴定研究,但是基于这些电位滴定试验结果的建模方法又不尽相同。例如,Plette^[9]等整合了3个位点的Langmuir – freundlich模型和 gibbs – donnan shell 模型,来模拟 *Rhodococcus* erythropolis A177 的酸碱滴定结果。Fein^[10]等对 Bacillus subtilis 进行了电位滴定,并且把细胞壁分为三个独立功能组,然后利用恒定电容模型模拟三组的电位变

收稿日期:2020-03-25

基金项目:国家自然科学基金(51774339)

贺治国(1978-),男,江西莲花人,博士,教授,主要从事矿产资源综合利用及环境微生物技术研究,E-mail: zghe@ csu. edu. cn。

作者简介:周姗(1986-),女,湖南郴州人,硕士,主要从事微生物相关研究, E-mail: zhousahn_csu@163.com。

通信作者:钟慧(1978-),女,河南开封人,博士,副教授,主要从事微生物相关研究,E-mail: hmmzhij@csu.edu.cn。

化,Cox^[11]等做了相似的试验,但是用了一种不同的建 模方法,即非静电线性编程方法,利用5个独立的结合 位点模拟滴定结果。而 Martinez^[12] 等利用 Gibbs donnan shell 模型并兼顾一系列均衡分布的 pK_a 值模拟 了 Bacillus subtilis 和 Escherichia coli 的滴定结果,并且 找到了证据支持可以把细菌表面分为四个功能区。尽 管已有大量工作研究其它微生物的表面化学特 性^[9-14],以完善表面络合模型,用于解释和预测微生物 在各种条件下的质子/重金属吸附行为,目前还没有研 究系统地报道过极端嗜酸菌 A. ferrooxidans 的表面质 子吸附/解吸附规律。细菌表面官能团种类繁多,位点 复杂,研究表明细菌表面上最常见的有机酸官能团是 羧基、羟基和磷酰基,氨基和巯基的含量较小,整合太 少位点的表面络合模型不能很好地进行拟合^[15]。Borrok 等人将四位点、无静电吸附的表面络合模型作为通 用模型对超过35个菌种/细菌群落的225个滴定数据 集进行了拟合,之后,Turner 和 Fein 发现尽管四位点的 无静电吸附模型可以合理地描述滴定数据,但获得的 菌的缓冲值"峰值"比预期要宽^[16]。相对于四位点的 无静电吸附模型,三位点的固定电容模型比较适合对 细菌表面质子化拟合^[13,16]。He 等的研究也发现对于 嗜酸菌 Acidianus manzaensis 的表面质子化拟合,三位 点的 Donnan 壳模型适用,两位点模型不能够提供很好 的拟合,四位点模型也没有提升拟合度[17]。该研究中 即采用三位点模型,使用被很多研究采用的能够优化 表面质子化模型的 ProtoFit¹⁶ 来进行酸碱滴定数据拟 合,对 A. ferrooxidans 进行表面质子化模拟。ProtoFit 作为一种质子化模型的工具,它可以用表面离散模型 (DLM)、固定电容模型(CCM)、Donnan 壳模型(DSM) 和无静电吸附模型(NEM)四种表面络合模型中的一 种来对1-4种表面功能基团位点进行优化拟合从而 得出该位点的 pKa 和位点浓度^[18]。

该研究中,考察了 pH 值、离子强度和培养能源 (S⁰、Fe²⁺、FeS₂)对 A. ferrooxidans 细胞的表面酸碱性 质的影响。先后进行了酸碱滴定和 ProtoFit 质子模拟, 并通过电泳迁移率测量和傅里叶变换衰减全反射红外 光谱法(ATR – FTIR)评估细胞壁上的电荷密度和官能 团分布。

1 试验部分

1.1 仪器与试剂

试验用到的主要仪器设备有雷磁 ZDJ-5 自动电 位滴定仪(上海精密仪器仪表有限公司)、Avanti J-E 离心机(Beckman Coulter, Inc.)、PHS-3C pH 计(上海 康仪仪器有限公司)、Nicolet Model Nexus 670 傅里叶 红外光谱仪(美国尼高力公司)、YXQ-LS-SII 立式压 力蒸汽灭菌器(上海博迅实业有限公司医疗设备厂)、 XMTE-7000 数控恒温浴锅(余姚市长江温度仪表 厂)。

试验菌株为 Acidithiobacillus ferroxidans A9,采用 改进的9K基础培养基培养。培养基配方为: $(NH_4)_2SO_4 3 g, KCl 0.1 g, K_2HPO_4 0.5 g, MgSO_4 ·$ $7H_2O 0.5 g, Ca(NO_3)_2 0.01 g, 加蒸馏水 1 000 mL。培$ $养基的初始 pH 值用 H_2SO_4 调节至 2.0, 分装于锥形瓶$ $中, 120 ℃ 灭菌 20 min。添加 S⁰(10 g/L)、FeSO_4 ·$ $<math>7H_2O(44.7 g/L) 或者黄铁矿(2\%) 作为生长的能源物$ $质, S⁰和 FeSO_4 · 7H_2O 等药品均为分析纯(AR), 由北$ 京鼎国昌盛生物技术有限责任公司生产。将接种了A. ferrooxidans 的锥形瓶置于 30 ℃、180~200 r/min 的恒温摇床培养。

试验用黄铁矿(FeS₂)由生物冶金教育部重点实验 室提供,粒度≤0.074 mm。经测定,黄铁矿矿样中元素 Fe 的质量百分比为 44.46%,S 为 47.78%。X 射线衍 射物相分析(结果见图 1)结果表明矿样可作为纯矿物 使用,杂质为石英。

图 1 黄铁矿 X 射线衍射图 Fig. 1 X – ray diffraction pattern of pyrite

1.2 试验方法

当细菌长到稳定期时,10 000 r/min 离心 15 min 收集菌体。收集的菌体悬浮于0.001 mol/L、0.01 mol/L 或 0.1 mol/L 的背景电解质 NaNO₃ 溶液中,在 25 ℃ 进行电位滴定试验。滴定前,用纯度大于99.99% 的氮 气涤荡 0.5 h 以赶走溶液中的二氧化碳,使 pH 值保持 在4~5之间。电位滴定试验按照文献报道的方法^[15]进行,菌悬液先用 0.1 mol/L HNO₃ 溶液调整 pH 值至 2.0,然后用 0.01 mol/L NaOH 在电位漂移率 ≤5 mV/min(0.1 mV/Sec)时持续加入碱,滴定至 pH 值为 10。为了检测可逆性和质子化行为进行了逆向滴定,即在

到达滴定终点(pH值为10)后,用0.1 mol/L HNO₃ 溶 液迅速滴定到 pH值为2,记录过程中所用 HNO₃ 溶液 的体积。整个滴定过程保持较低压力的氮气缓慢地通 入菌悬液。滴定结束后,对酸碱滴定结果进行拟合。 利用 ProtoFit 软件将原始滴定数据进行优化处理,得到 最优化模拟数据,根据最优数据模拟出质子模型,并与 原始滴定数据作比较以检验将质子模型应用于极端 嗜酸微生物 A. ferrooxidans 表面酸碱性质研究的适 用性。

为了进行电泳迁移率测量,菌体离心收集、洗涤后 重悬于0.001 mol/L、0.01 mol/L或0.1 mol/L的 NaNO、 溶液中,保存在冰上。将三个不同离子浓度的 NaNO₃ 溶液的等分试样(10 mL)通过分别添加 1 mol/L HNO₃ 溶液或 1 mol/L NaOH 溶液,调整为不同的 pH 值(2 ~ 10)。在电泳迁移率测量之前,将这些样品和相应离子 强度的细菌悬浮液混合,并测定最终 pH 值。使用 Zeta 电位和粒度分析仪(Delsa 440SX)在 25 ℃下测量电泳 迁移率。所有试验均设置三个平行。

FTIR 分析: 配制不同 pH 值的 0.01 mol/L 的 NaNO₃ 溶液制备细菌悬液,利用 FTIR 分光光度计测定 吸光值^[18]。每一个 pH 值条件下,在 4 000 cm⁻¹ ~ 950 cm⁻¹波长范围内,以 4 cm⁻¹的分辨率进行 100 次测定。

图 2 S⁰(a)、Fe²⁺(b)、FeS₂(c)培养的 A. *ferrooxidans* 不同离子强度酸碱滴定曲线 **Fig. 2** Potentiometric titration data of A. *ferrooxidans* cultured with S⁰(a), Fe²⁺(b) and FeS₂(c) at different ionic strengths

2 试验结果

2.1 不同能源培养的 A. ferrooxidans 不同离子强 度酸碱滴定曲线

电位滴定曲线见图 2(a-c),结果表明,三种不同 能源培养的 A. ferrooxidans 在 pH 值 2~4 间均有很强 的缓冲能力。一些研究发现去质子化过程就是细菌表 面的酸性位点对溶液中不断加入的碱性溶液的一种缓 冲现象^[17,19],在该研究中得到了相同的结论。滴定过 程中滴定仪实时显示的滴定曲线表明细菌悬浮液的第 一次 pH 值升高和第二次 pH 值降低的滴定之间具有 极好的一致性(图片未展示),表明在滴定试验的时间 范围内(约2h),质子吸附和解吸是完全可逆的。每 种离子强度下,质子在细菌上的吸附程度随 pH 值的 增加而降低。滴定数据还表明,培养能源对细菌的缓 冲能力有很大的影响。整体上,以 S⁰ 为能源培养的 *A. ferrooxidans* 具有最强的缓冲能力,以 Fe²⁺ 为能源的次 之,而 FeS₂ 培养的最弱。在 Li 等人的研究中,在0.01 M NaCl 溶液作为背景电解质的离子强度下,Fe²⁺为能 源培养的 A. ferrooxidans 的缓冲能力也低于以 S⁰ 为能 源的,但以 CuFeS₂ 为能源的缓冲能力最强^[6]。离子强 度对不同能源培养的 A. ferrooxidans 细胞的缓冲能力 表现出不同的影响。S⁰ 培养的 A. ferrooxidans 在 0.1 mol/L 的 NaNO₃ 溶液中缓冲能力最好,当 0.01 mol/L NaOH 用量为 110 mL 时,滴定曲线才基本平衡。 FeS_2 为能源培养的 A. ferrooxidans 在 0.001 mol/L 的 NaNO₃ 溶液中缓冲能力最好, NaOH 用量为 42 mL 时滴定趋于 平衡。而 A. ferrooxidans 以 Fe^{2+} 为能源培养后对 0.01 mol/L NaNO₃ 溶液缓冲能力好, NaOH 用量在 53 mL 左 石时去质子化基本达到平衡。

图3 S⁰(a)、Fe²⁺(b)、FeS₂(c)培养的 A. ferrooxidans 不同离子强度质子吸附/解吸附结果 Fig. 3 Protonation and deprotonation for A. ferrooxidans cultured with S⁰(a), Fe²⁺(b) and FeS₂(c) at different ionic strengths

测量的 pH 值(x 轴)与在滴定过程中消耗或释放 的质子(y 轴)相对于离子强度的归一化结果如图 3 所 示,便于直观比较不同离子强度下的结果。纵坐标数 据根据公式(1)进行计算:

 $[H^{+}]_{consumed/released} = (C_{a} - C_{b} - [H^{+}] + [OH^{-}])/mb$ (1)

其中 Ca 和 Cb 是滴定过程添加的酸和碱的浓度, 单位为 mol/L, mb 是细菌的湿重悬浮液浓度(g/L)。

质子吸附/解吸附曲线表明不同能源培养的 A. ferrooxidans 细胞的表面存在 pKa 值相近的官能团,且 在所研究的整个 pH 值范围内发生了大量的质子吸 附/解吸附。在三种不同的离子强度溶液中,三种不同 能源培养的细胞呈现出明显不同的位点浓度。在0.01 mol/L电解质溶液中,以Fe²⁺为能源培养的A. ferrooxidans 细胞的位点浓度是以S⁰为能源条件下的两倍,是 FeS₂为能源条件下五倍。对于以S⁰为能源培养的A. ferrooxidans,在0.01 mol/L电解质溶液中的总位点浓 度明显低于在另外两个研究的离子强度下的,而以 Fe²⁺为能源的在0.01 mol/L离子强度的电解质溶液中 总位点浓度最高。以FeS₂为能源培养的A. ferrooxidans 细胞在三种离子强度下总位点浓度无显著差异。

之前的研究报道表明^[17],嗜酸嗜热古菌A. manzaensis在0.01 mol/L的NaNO₃溶液中能缓冲大量的NaOH,在滴定达到平衡的时候NaOH的用量达到 50 mL;在0.001 mol/L的NaNO₃溶液中NaOH用量为 47 mL;而在0.1 mol/L NaNO₃溶液中其缓冲能力最 差,只消耗35 mL 0.01 mol/L 的 NaOH 溶液即基本达 到平衡。Tourney 等^[20]研究了革兰氏阳性嗜热菌 Bacillus licheniformis S – 86 的电位滴定,发现在所研究的 范围内,离子强度对去质子化常数或位点浓度没有显 著影响。而 Burnett 等^[18]得出结论,随着离子强度的增 加,Anoxybacillus flavithermus 的缓冲能力增加。Johnson^[21]的研究表明,革兰氏阴性细菌 Shewanella putrefaciens 在好氧和厌氧条件下表现出完全不同的酸碱性 质,这些差异远大于不同培养基配方或菌龄引起的差 异。但是,该研究中生长能源(S⁰、Fe²⁺、FeS,)显著影 响了 A. ferrooxidans 的表面特性,导致离子强度对不同 能源培养的 A. ferrooxidans 细胞表面缓冲能力的影响 也不同。

2.2 ProtoFit 模拟

该研究采用 DSM (Donnan 壳的静电模型)来模拟 不同离子强度条件的滴定,利用每组滴定数据计算出 不同能源培养的 A. ferrooxidans 细胞表面位点的 logK 值和位点浓度(表1)。

表1 不同能源培养的 A. ferrooxidans 及一些生物表面的表面特性

Table 1 Surface characteristics of A. ferrooxidans and some biological surfaces

Species, (culture)	Source	pk1	pk2	pk3	$C_1/(10^{-4} \text{ mol/g})$	$C_2/(10^{-4} \text{ mol/g})$	$C_3/(10^{-4} \text{ mol/g})$	$C_{\text{total}}/(10^{-4} \text{ mol/g})$
A. ferrooxidans, (S^0)	this paper	3.4	5.6	10.3	3.1	3.7	5.8	12.6
A. ferrooxidans, (Fe^{2+})	this paper	4.2	5.8	9.9	2.1	3.5	5.9	11.5
A. ferrooxidans, (pyrite)	this paper	2.4	6.9	10.3	1.3	2.8	7.9	11
A. flavithermus	Wightman et al. (2001) ^[22]	4.94	6.85	7.85	5.33	1.79	1.42	8.54
B. subtilis,	Daughney et al. (1998) ^[23]	4.8	6.49	8.52	6.92	4.44	6.29	17.6
B. subtilis	Daughney et al. (1998)	4.12	5.47	8.09	3.27	6.27	2.42	11.96
A. manzaensis, (sulfur)	He et al. (2013)	2.9	6.8	7.8	4.3	1.8	2.4	8.5
A. manzaensis, (pyrite)	He et al. (2013)	2.4	7	8.2	2.1	1.5	3.4	7
T. thermophilus	Ginn and Fein (2008) ^[24]	3.75	5.73	8.81	11.18	4.47	3.08	18.73

根据文献^[11,12,25], 羧基的解离常数为2~6, 磷酸盐 基团的解离常数一般为5.6~7.2, 伯胺的解离常数大 于10, 氨基的解离常数为7~9, 羟基的解离常数为8.6

~9。该研究中,根据 ProtoFit 软件模拟得到的去质子 化常数可以推测 A. ferrooxidans 细胞表面存在羧基、磷酸盐基团和伯胺。

图 4 S⁰(a)、Fe²⁺(b)、FeS₂(c)培养的 A. *ferrooxidans* 不同离子强度电泳迁移率 Fig. 4 Electrophoretic mobility data for A. *ferrooxidans* cultured with S⁰(a), Fe²⁺(b) and FeS₂(c) at different ionic strengths

2.3 电泳迁移率分析

电泳迁移率可以估算出整个细菌表面电荷及其等 电点,图3为不同能源培养的A. ferrooxidans 在不同离 子强度下的电泳迁移率。数据表明,A. ferrooxidans 在 pH 值范围内(2~10)均呈负电性。随着 pH 值的升 高,A. ferrooxidans 表面的负电荷增加,符合微生物表 面带电的一般特性[26]。有研究报道电泳迁移率随离 子强度的增加而降低[27],但该研究的结果并不支持这 一结论。目前关于离子强度对细菌质子化参数影响的 研究尚未达成共识^[20]。该研究中观察到细胞的电泳 迁移率取决于许多因素,例如 pH 值、离子强度和培养 能源,并且发现培养能源极大地影响了细菌的电泳迁 移率。对于以 S⁰ 或 Fe²⁺为能源培养的 A. ferrooxidans 细胞,pH 值对电泳迁移率的影响随离子强度的增加而 增加(斜率变陡),而对于以FeS,为能源培养的A. ferrooxidans 细胞,该研究中得到了相反的结论。结果还 表明,培养能源显著影响 A. ferrooxidans 细胞的等电 点。以 S⁰ 为能源培养的 A. ferrooxidans 的等电点 (IEP)约为2.0,并且不受溶液离子强度的影响。对于 以 Fe²⁺或 FeS₂ 为能源培养的 A. ferrooxidans,即使在研 究的最低 pH 值下也未观察到 IEP。

2.4 A. ferrooxidans 的 ATR - FTIR 图谱分析

进一步采用 ATR – FTIR 分析在不同的 pH 值条件 下,不同能源培养的 A. ferrooxidans 表面官能团的分布 规律。图 5 是以 S⁰、Fe²⁺或 FeS₂为能源培养的 A. ferrooxidans 在 pH 值为 2.02、4.04、5.66、7.97 和 9.7 条 件下的 ATR – FTIR 图谱。表 2 总结了在不同 pH 值下 以 S⁰、Fe²⁺或 FeS₂为能源培养的 A. ferrooxidans 的主 要官能团的特征峰的比较。结果表明, A. ferrooxidans 的红外图谱显示出较大的差异, 与培养能源和 pH 值 相关。

以 S⁰ 为能源培养的 A. ferrooxidans, pH 值为4.04、 5.66 和 7.92 时的吸收峰较多,主要分布在 1 000 cm⁻¹ ~1 200 cm⁻¹和 1 500 cm⁻¹~1 700 cm⁻¹范围内, pH 值 为 2.01 和 pH 值为 9.7 时的图谱没有明显的吸收峰。 1 044 cm⁻¹处的吸收峰在 pH 值为 2.01 时比较弱, 与 1 083 cm⁻¹处的吸收峰强度几乎一样。之后随着溶液 碱性增加,1 044 cm⁻¹处的吸收慢慢增强, 在 pH 值为 7.92时的谱带中达到最大, 是 1 083 cm⁻¹处的吸收峰 的 5 倍以上。但是, 在 pH 值为 9.7 时的谱带中没有这 两个吸收峰。1 500 cm⁻¹~1 600 cm⁻¹范围内各 pH 值 条件下的谱带也有明显区别:在 pH 值为 2.01 时的谱 带中,这个范围的吸收峰较弱;在 pH 值为 4.04 和5.66 的谱带中,这个范围的吸收峰宽度和强度都很相似。 pH 值为7.92 的谱带中,1 630 cm⁻¹处的吸收峰变得很强,主要是由氨基与蛋白连接的C=O基团的伸缩引起的特征吸收峰。酰胺Ⅱ类和酰胺Ⅰ类的吸收峰分别出现在1538 cm⁻¹、1546 cm⁻¹和1630 cm⁻¹处,酰胺Ⅱ 类与酰胺Ⅰ类的比值随着 pH 值的上升而增大,但是在 pH 值为9.7 时两个吸收峰不明显。

以 Fe^{2+} 为能源培养的 A. ferrooxidans 的 ATR – FT-IR 图谱见图 5 (b)。仲醇 C – O 基团的吸收峰随着 pH 值的上升位置有所偏移,从 pH 值为 2.01 的 1 072 cm⁻¹,到 pH 值为 5.66 时的 1 080 cm⁻¹,到 pH 值为 7.92时的 1 084 cm⁻¹;而且在 pH 值≥4.04 时,逐渐分 出伯醇 C = O 基团的吸收峰,在 pH 值为 7.92 时仲醇 C – O基团和伯醇 C = O 基团的吸收峰最强。1 650 cm⁻¹~1 550 cm⁻¹为酰胺 I 类和酰胺 II 类的吸收峰。 酰胺 II 类的吸收随 pH 值的上升而减弱,酰胺 I 类的 吸收随 pH 值的上升而增强。酰胺 I 类与酰胺 II 类在 pH 值为 9.7 时吸收峰不明显。

图 5 $S^{0}(a)$ 、 $Fe^{2+}(b)$ 和 $FeS_{2}(c)$ 培养的 A. ferrooxidans 在不同 pH 值的 ATR – FTIR 图谱

Fig. 5 ATR – FTIR spectra of A. ferrooxidans cultured with S^0 (a), $Fe^{2+}\,(b)$ and $FeS_2\,(\,c\,)$ at different pH values

图 5(c) 是以 FeS₂ 为能源培养的 A. ferrooxidans 的 ATR - FTIR 谱图。吸收峰主要集中在 1 260 cm⁻¹ ~ 1 000 cm⁻¹和1 640 cm⁻¹~1 600 cm⁻¹两个波段。1 260 cm⁻¹~1 000 cm⁻¹被复杂的叠加振动所控制,主要为 C - O - C 和 C - O - P 的伸缩振动,这些基团涉及复杂的多糖群体。pH 值为 4.04 和 7.92 的谱带中没有较强的吸收峰。1 084 cm⁻¹的吸收峰随 pH 值的上升其吸收减弱,而且吸收波段有所迁移,pH 值为 9.7 时在 1 077 cm⁻¹。酰胺 II 类和酰胺 I 类的吸收峰分别出现在 1 547 cm⁻¹、1 545 cm⁻¹和 1 646 cm⁻¹处。酰胺 II 类与酰胺 I 类的比值随着 pH 值的上升而减弱,但是在 pH 值为 9.7 时酰胺 II 类吸收峰明显。相对以 S⁰ 或

Fe²⁺为能源培养的 A. ferrooxidans 的谱图,以 FeS₂为能 源培养的 A. ferrooxidans 的谱图吸收峰较多,没有像以 S⁰或 Fe²⁺为能源培养的 A. ferrooxidans 的谱图一样出 现明显的特征吸收峰。

这些有酸碱活性的羧基、酰胺基和磷酸基等官能 团在电位滴定过程中起到重要的作用,不同能源培养 的 A. ferrooxidans 表面官能团分布的差异影响了其质 子吸附/解吸附规律。

表 2 不同 pH 值下以 S⁰、Fe²⁺或 FeS₂ 为能源培养的 *A. ferrooxidans* 表面主要官能团的比较 **Table 2** Comparison on the main functional groups of *A. ferrooxidans* cultured with S⁰, Fe²⁺ or FeS₂ at different pH values

A. ferrooxidans (sulfur)	A. ferrooxidans (pyrite)	A. ferrooxidans (Fe^{2+})	Wave number (cm ⁻¹)	Functional groups
pH = 4.04, 5.66, 7.92	pH = 2.01, 9.7	pH = 2.01, 4.04, 5.66, 7.92	~1 600 -1 640	伯胺 N-H 面内弯曲
pH = 2.01, 4.04, 5.66, 7.97, 9.7	pH = 2.01, 4.04, 5.66, 7.92, 9.7	pH = 2.01, 4.04, 5.66, 7.92	~1 540	酰胺Ⅱ类 C = O 基团的伸缩
pH = 4.04, 5.66, 7.92	pH = 2.01, 9.7		~1 455	CH ₂ /CH ₃ 弯曲振动(剪式移动)
pH =7.92	pH = 2.01, 4.04, 5.66, 7.97		~1 398	羧基对称性伸缩 CH ₂ /CH ₃ 弯曲振动
pH = 4.04, 5.66, 7.92			~1 240	磷酸盐 P=O 基团伸缩振动
pH = 2.01, 4.04, 5.66, 7.97	pH = 2.01, 4.04, 5.66, 9.7		~1 200 -900	PO-2 的对称性和非对称性伸缩 磷酸盐中的 P(OH) ² 伸缩振动 多糖中 C-OH、C-O-C、C-C 的振动
pH = 4.04, 5.66, 7.97	pH = 2.01, 4.04, 5.66	PH = 2.01, 4.04, 5.66, 7.92	~1 080	仲醇 C – O 基团伸缩振动

3 结论

该研究将酸碱电位滴定结合表面络合理论用于极 端嗜酸菌 A. ferrooxidans 的酸碱缓冲能力的解析。结 果表明,A. ferrooxidans 的表面性质受到能源、离子强 度和 pH 值的影响。随着 pH 值的升高,缓冲容量也增 加,导致表面负电荷增加。ProtoFit 拟合结果表明以 S° 为能源培养的 A. ferrooxidans 表面的总位点浓度高于 以Fe²⁺或FeS。为能源培养的A. ferrooxidans。根据选 择的 DSM 模型,可以通过调用三种不同类型的细胞壁 官能团来表征 A. ferrooxidans 细胞壁的酸碱性质: 羧 基、磷酸基和酰胺基,并通过 ATR - FTIR 得到了验证。 与S⁰为能源培养的A. ferrooxidans 相比,以FeS,为能 源培养的 A. ferrooxidans 的表面官能团具有更高的多 样性。该研究将表面络合理论扩展到冶金模式微生物 A. ferrooxidans,结果同样适用,该研究可以为 A. ferrooxidans 及其它嗜酸微生物的表面性质的研究提供重 要参考。

参考文献:

- DEVASIA P, NATARAJAN KA. Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces [J]. International Journal of Mineral Processing, 2010,94(3-4): 135-139.
- [2] BONNEFOY V, HOLMES DS. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments [J].

Environmental Microbiology, 2012, 14(7): 1597 - 1611.

- [3] WANG W, XIAO S, CHAO J, et al. Regulation of CO₂ fixation gene expression in *Acidithiobacillus ferrooxidans* ATCC 23270 by Lix984n shock [J]. J Microbiol Biotechnol, 2008, 18(11): 1747 1754.
- [4] DONG Y, LIN H, XU X, et al. Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals [J]. Hydrometallurgy, 2013, 140: 42 – 47.
- [5] ZHU J, WANG Q, ZHOU S, et al. Insights into the relation between adhesion force and chalcopyrite – bioleaching by *Acidithiobacillus ferrooxidans*[J]. Colloids Surf B Biointerfaces, 2015, 126: 351 – 357.
- [6] LI Q, WANG Q, ZHU J, et al. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans [J]. Minerals, 2016, 6(4): 100 – 111.
- [7] HE ZG, YANG YP, ZHOU S, et al. Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes
 [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 1171-1178.
- [8] MISHRA B, BOYANOV M, BUNKER BA, et al. High and low affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis [J]. Geochimica Et Cosmochimica Acta, 2010, 74(15): 4219 – 4233.
- [9] PLETTE ACC, VAN RIEMSDIJK WH, BENEDETTI MF, et al. pH dependent charging behavior of isolated cell walls of a gram – positive soil bacterium[J]. Journal of Colloid and Interface Science, 1995, 173(2): 354 – 363.
- [10] FEIN JB, BOILY JF, YEE N, et al. Potentiometric titrations of *Bacillus subtilis* cells to low pH and a comparison of modeling approaches [J]. Geochimica Et Cosmochimica Acta, 2005, 69(5): 1123 1132.
- [11] COX JS, SMITH DS, WARREN LA, et al. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding [J]. Environmental Science & Technology, 1999, 33 (24): 4514-4521.

- [12] MARTINEZ RE, SMITH DS, KULCZYCKI E, et al. Determination of intrinsic bacterial surface acidity constants using a donnan shell model and a continuous pKa distribution method [J]. Journal of Colloid and Interface Science, 2002, 253(1): 130-139.
- [13] HAAS JR, DICHRISTINA TJ, WADE R. Thermodynamics of U(VI) sorption onto Shewanella putrefaciens [J]. Chemical Geology, 2001, 180(1-4): 33-54.
- [14] KENNEY JPL, FEIN JB. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments[J]. Environmental Ence & Technology, 2011, 45(10): 4446-4452.
- [15] FEIN JB, YU Q, NAM J, et al. Bacterial cell envelope and extracellular sulfhydryl binding sites: Their roles in metal binding and bioavailability[J]. Chemical Geology, 2019, 521: 28-38.
- [16] TURNER BF, FEIN JB. Protofit: a program for determining surface protonation constants from titration data[J]. Computers & Geosciences, 2006, 32(9): 1344 – 1356.
- [17] HE ZG, YANG YP, ZHOU S, et al. The effect of culture condition and ionic strength on proton adsorption at the surface of the extreme thermophile Acidianus manzaensis [J]. Colloids and Surfaces B – Biointerfaces, 2013, 102: 667 – 673.
- [18] BURNETT P G, HEINRICH H, PEAK D, et al. The effect of pH and ionic strength on proton adsorption by the thermophilic bacterium Anoxybacillus flavithermus[J]. Geochimica Et Cosmochimica Acta, 2006, 70 (8): 1914 - 1927.
- [19] LI MK, HUANG YJ, YANG YP, et al. Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25 [J]. Ecotoxicology and Environmental Safety,

2020, 190.

- [20] TOURNEY J, NGWENYA BT. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS – producing bacterial strain[J]. J Colloid Interface Sci, 2010, 348(2): 348 – 354.
- [21] HAAS JR. Effects of cultivation conditions on acid base titration properties of *Shewanella putrefaciens* [J]. Chemical Geology, 2004, 209(1 -2): 67-81.
- [22] WIGHTMAN PG, FEIN JB, WESOLOWSKI DJ, et al. Measurement of bacterial surface protonation constants for two species at elevated temperatures [J]. Geochimica Et Cosmochimica Acta, 2001, 65 (21): 3657-3669.
- [23] DAUGHNEY CJ, FEIN JB. The Effect of Ionic Strength on the Adsorption of H⁺, Cd²⁺, Pb²⁺, and Cu²⁺ by *Bacillus subtilis and Bacillus licheniformis*: A Surface Complexation Model[J]. Journal of Colloid And Interface Science, 1998, 198(1): 53 – 77.
- [24] GINN BR, FEIN JB. The effect of species diversity on metal adsorption onto bacteria[J]. Geochimica Et Cosmochimica Acta, 2008, 72(16): 3939 - 3948.
- [25] и. C. 拉甫罗夫. 胶体化学实验[M]. 高等教育出版社, 1992.
- [26] SCHWARZ M, KLOSS S, STOCKEL S, et al. Pioneering particle based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy [J]. Anal Bioanal Chem, 2017, 409(15): 3779 – 3788.
- [27] ADOUT A, KANG S, ASATEKIN A, et al. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria[J]. Environmental Science & Technology, 2010, 44(7): 2406 – 2411.

Study on Surface Proton Adsorption Characteristics of Bioleaching Model Microorganism *Acidithiobacillus ferrooxidans*

ZHOU Shan¹, LI Shuzhen¹, ZHONG Hui², HE Zhiguo¹

1. School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, Hunan, China;

2. School of Life Science, Central South University, Changsha 410013, Hunan, China

Abstract: *A. ferrooxidans* is an important bioleaching microorganism and the main driving microorganism for the formation of acid mine drainage. To investigate the surface proton adsorption mechanism of *A. ferrooxidans*, acid – base titration, ProtoFit simulation, electrophoretic mobility determination and Fourier transform attenuated total reflection infrared spectroscopy (ATR – FTIR) were applied to study the effects of different energy sources (S^0 , Fe^{2+} , FeS_2) and ionic strength (0.001 mol/L, 0.01 mol/L and 0.1 mol/L NaNO₃) on surface protonation/deprotonation of *A. ferrooxidans* and the key functional groups involved in the reaction. Results showed that three – site Donnan model could describe the surface complexation of *A. ferrooxidans* pretty well; The surface properties of *A. ferrooxidans* were sensitive to both culture energy and ionic strength; *A. ferrooxidans* was negatively charged in the broad pH range (2 – 9) studied; The carboxyl group, phosphate group and amide group are the key functional groups in the protonation/deprotonation process. This study indicates important application potential of *A. ferrooxidans* in the adsorption of heavy metals and has important guiding significance for the elucidation of the surface proton adsorption mechanism of *A. ferrooxidans*.

Key words: A. ferrooxidans; energy source; automatic potentiometric titration; adsorption; surface property

引用格式:周姗,栗树珍,钟慧,贺治国. 冶金模式微生物 Acidithiobacillus ferrooxidans 表面质子吸附特性的研究[J]. 矿产保护与利用, 2020,40(4):1-8.

Zhou S, Li SZ, Zhong H and He ZG. Study on surface proton adsorption characteristics of bioleaching model microorganism *acidithioba-cillus ferroxidans* [J]. Conservation and utilization of mineral resources, 2020, 40(4): 1 – 8.