河南信阳上天梯沸石矿工艺矿物学研究

刘意,严春杰*,杨光明,周凤,叶光雨,王洪权,周森,朱小燕

中国地质大学(武汉)材料与化学学院,湖北 武汉 430078

中图分类号:TD91;TD975 文献标识码:A 文章编号:1001-0076(2021)06-0073-06 DOI:10.13779/j. cnki.issn1001-0076.2021.07.012

摘要 为科学评价和开发利用信阳上天梯沸石矿资源,以上天梯沸石矿为对象,通过光学显微镜观测分析、X 射线荧光光谱分析、X 射线衍射仪分析、扫描电镜及矿物自动分析仪等分析测试技术,开展了矿石工艺矿物学研究。研究表明,上天梯沸石矿 具备较高硅铝比(SiO₂/Al₂O₃),沸石矿组成矿物达25余种,主要组成矿物为斜发沸石(含量20%~85%),晶体发育良好,呈 板片状或厚板状形态。斜发沸石颗粒90%以上粒径大于150 μm,在+74 μm、-74+45 μm、-45 μm 的解离度分别为 25.02%、27.99%、56.9%,连生关系主要以与钾长石、石英及蒙脱石的两相连生为主。

关键词 上天梯;沸石矿;斜发沸石;工艺矿物学

引言

斜发沸石,理论化学式(Na,K,Ca)₂₋₃[Al₃(Al, Si)₂Si₁₃O₁₆]·12H₂O,产于强烈风化蚀变的玻璃质凝 灰岩中;亦产于蚀变的火山玻璃中^[1]。斜发沸石的骨 架结构类型为 HEU^[2],是天然的分子筛,其结构决定 了其具备优异的性能,如离子交换性、吸附性、催化性 等性能。斜发沸石在气体的干燥吸附、环境保护(废气 废水处理^[3],如核反应堆泄露出来的放射性元素锶和 铯^[4])、建材行业(水泥生产、烧制骨料)、农牧业(饲料 添加剂、土壤改良剂)^[5-7]、催化剂载体^[8]、功能填料^[9] 等方面具有广泛的应用。

我国最早在 1972 年浙江缙云首先发现天然沸石 矿,关于缙云斜发沸石矿物特征、构造、性能及用途等 已取得了一些成果和进展^[10-12],沸石矿开发与加工已 获得了明显的经济效益。据不完全统计,我国已发现 400 处沸石矿床(点),总储量约 30 亿 t。浙江缙云、河 北独石口、黑龙江海林等地的沸石储量均在亿吨以上, 是我国较大型的沸石矿床^[13]。河南省信阳市上天梯 非金属矿矿区沸石矿资源储量丰富,已探明沸石矿储 量 0.6 亿 t,矿体埋藏较浅,开采成本低,矿区具备良好 的产业基础和资源条件。但相比于浙江地区沸石矿, 上天梯非金属综合矿床中沸石矿的开发程度最低,这 跟有关沸石矿基础研究的缺乏有密切关联。为科学地 评价和开发利用上天梯沸石矿资源,提高当地沸石矿的开发利用率,本文通过系统采样,多种分析技术方法结合,包括光学显微镜分析、X射线荧光光谱分析(XRF)、X射线衍射仪分析(XRD)、扫描电镜(SEM)及矿物自动分析仪(AMICS)等技术,确定了上天梯沸石矿的矿物特征。

1 试验部分

1.1 试验原料

上天梯沸石矿:通过刻槽法取样对上天梯沸石矿 区矿体不同空间位置具不同矿石矿物组成及相对含量 等矿石特征进行穿脉全程采取的样品,刻槽法采集样 品规格(10 cm×5 cm)~(10 cm×7 cm),视矿体层的 稳定性情况,沿自下而上的方向间隔1~2 m取一个样 品沸石矿采集于 A、T、X 三个矿区。

1.2 试验方法

以 *T* 矿区某代表性沸石矿(T02)磨制光片,经表 面喷碳处理后采用矿物自动分析仪(AMICS,由 ZEISS Sigma 300场发射扫描电镜、BRUKER X 射线能谱仪及 AMICS分析软件组成)对样品的矿物组成、粒度进行 分析;取 100g均质化的粉末研磨样品,筛分获得+74 μm(+200目)、-74+45μm(-200+325目)、-45

收稿日期:2021-09-15

基金项目:浙江省非金属矿工程技术研究中心开放课题(ZD2020K10),湖北省自然科学基金(2020CFB385, 2020CFA037)

作者简介:刘意(1989-),男,河南焦作人,博士,讲师,主要从事矿物材料与综合利用、环境矿物材料及吸附分离等研究,E-mail:yiliu@cug.edu.cn。 通信作者:严春杰(1963-),男,湖北武汉人,博士,教授,主要从事矿物材料与综合利用、工业废水处理、环境矿物材料及吸附分离,E-mail:chjyan2005@126.com。

μm(-325 目)样品,借助 AMICS 分析斜发沸石解离 度;以沸石矿制备薄片,利用蔡司(ZEISS)分析级偏光 显微镜 Axio Lab. A1 Pol 对沸石矿物特征进行分析;采 用日立公司型号为 SU8010 扫描电镜对沸石块状样品 进行形貌分析;将不同编号的沸石矿破碎、四分法取 样、研磨并过 200 目标准筛,分别利用 X 射线粉晶衍射 仪(德国 Broker AXS D8 – Focus,测试工作条件:电流 40 mA,电压 40 kV,扫描角度 3 ~ 60°)、荷兰帕纳科 AXIOSmAX X 射线荧光光谱仪对粉末样品进行物相及 化学成分析。

2 结果与讨论

2.1 沸石矿矿物组成

沸石矿外观多为浅绿色、淡黄色。新鲜断石呈参

差状,显油脂~玻璃光泽,块状构造。通过A、T和 $X \equiv$ 个矿区 21 块薄片的显微镜观测,沸石矿主要组成矿物 为斜发沸石,含量变化在 30%~80%,一般大于 60%。 长石是分布最广泛的共生矿物,一般含量在 15% 左 右。蒙脱石常见,但分布不均,在A矿区矿石中分布很 广,但在T矿区中很少见。方石英和石英为常见共生 矿物,但二者含量均较低(<5%)。通过显微镜观测 和结合 XRD 物相测定,沸石矿中组成矿相达 16 余种: 主要组成矿物为斜发沸石(图 1a、c、i、j),其次为蒙脱 石、碱长石(图 1a - b)、斜长石(图 1d),方石英(图 1g -h),少量伊利石、高岭石,微量蛋白石(图 1k - 1)、黑 云母(图 1e)、白云母,偶见锐钛矿(图 1m)、金红石(图 1n)、玉髓(图 1o - p)、榍石及少量不透明矿物黄铁矿 (图 1f)、褐铁矿(图 1k - 1)。

斜发沸石显微鉴定表明:较粗大颗粒(d=100 μm)

图1 沸石矿薄片显微镜照片

Fig. 1 Microphotographs of polished zeolite slice

形态多为叶片状、板条状(图1c),极细小者为针柱状 (图1i)。薄片中为无色透明,负中突起,比较折光率 小于蒙脱石,接近方石英,可见一组解理,干涉级为一 级灰,消光角小(≤10°),近于平行消光,正延性,(-) 2V约40°~50°。

沸石矿主要结构构造特征:

(1)变余(残余)玻屑凝灰质结构。玻屑由骨片 状、孤面棱角状、骨棒状等碎裂的火山玻璃碎屑组成不 规棱角状多边形,绝大部分已蚀变斜发沸石(或蒙脱 石),但仍留玻屑之假象(图1a)。

(2)含晶屑凝灰质结构。晶屑多见长石类、黑云 母等矿物晶体,由微晶斜发沸石、蒙脱石及长英质胶结 而成(图1c-h)。

(3)残余珍珠结构。珍珠岩大多由蚀变的斜发沸 石微细集合取代,但仍保留珍珠玻璃质形态,为假象珍 珠结构(图 li)。

2.2 化学成分分析

上天梯沸石矿化学成分见表1。由主量元素化学成分可知,沸石主要成分为SiO₂与Al₂O₃,各矿区成分差别不大,SiO₂+Al₂O₃含量约为76%~84%,沸石矿SiO₂/Al₂O₃摩尔比在8.8左右,由此可见沸石矿具有较高硅铝比,较高的硅铝含量可将沸石矿开发用于水泥活性混合材料等用途。另含较多的K₂O、Na₂O(K₂O>

1%

表1 沸石矿主量元素含量表

Table 1 XRF and	lysis results of zeolite ore
-----------------	------------------------------

编号	SiO_2	Al_2O_3	TFe	MgO	CaO	Na2O	K20	MnO	TiO ₂	$P_{2}O_{5}$	烧失量	合计
A01	68.67	13.04	1.35	0.98	1.85	1.50	2.59	0.02	0.24	0.04	9.60	99.88
A0201	65.84	12.17	5.10	1.00	1.66	1.23	3.32	0.04	0.25	0.05	9.21	99.87
A0202	67.55	13.17	1.16	1.04	2.09	1.20	2.75	0.03	0.26	0.04	10.6	99.89
A0301	70.68	12.42	1.39	0.98	1.76	1.28	2.82	0.02	0.24	0.03	8.29	99.91
A0302	69.09	13.36	2.16	1.10	1.74	1.18	2.87	0.03	0.24	0.04	8.08	99.89
A0303	69.85	13.70	1.25	1.27	1.77	0.96	3.10	0.03	0.28	0.04	7.67	99.92
A034	69.64	14.01	1.49	1.11	1.56	0.69	3.99	0.02	0.3	0.03	7.06	99.9
T0101	67.11	14.73	3.01	1.16	1.63	2.15	3.10	0.04	0.35	0.07	6.52	99.87
T0102	69.51	14.02	1.32	0.95	1.71	2.16	2.93	0.03	0.3	0.06	6.88	99.87
T0103	69.55	12.97	1.28	0.97	1.88	1.64	2.64	0.02	0.27	0.04	8.62	99.88
T0104	70.01	12.65	1.21	1.00	1.90	1.36	2.40	0.05	0.24	0.03	9.03	99.88
T0201	64.19	12.84	6.75	1.36	1.70	1.19	2.78	0.08	0.36	0.06	8.57	99.88
T0202	68.77	13.03	1.13	0.97	1.92	1.43	2.68	0.02	0.28	0.05	9.60	99.88
T0203	67.35	13.96	1.19	1.19	2.08	1.03	2.49	0.03	0.32	0.04	10.21	99.89
T0204	68.42	12.89	1.14	1.07	2.21	0.75	2.55	0.02	0.26	0.03	10.54	99.88
T03	68.71	13.85	1.32	0.98	1.73	1.80	2.65	0.02	0.28	0.05	8.49	99.88
X01	69.02	13.13	1.17	0.98	1.81	1.02	3.14	0.02	0.24	0.04	9.33	99.90

Na₂O) 以及 MgO 等, w(Na₂O + K₂O) 高于 w(MgO + CaO), 碱金属氧化物总量约为 3% ~ 7%。TFe 含量一般为 1% ~ 3%, 少数样品超过 5%, 如, AO201 的 TFe 含量为 5.1%, TO201 的 TFe 含量达到 6.75%, 这与该样品的外观颜色为绿色的特征有关。根据沸石矿的化学成分可知上天梯沸石矿属于高硅富钾钙型沸石矿。

2.3 物相分析

图 2 是上天梯部分代表性样品的 XRD 图谱。*A 矿* 区(*A*01)的 XRD 图谱显示,*A* 区沸石矿样品有斜发沸石、蒙脱石、长石、方石英、石英等矿物。蒙脱石样品的 *d*₍₀₀₁₎ = 14.8696 Å(1Å = 0.1 nm),可知该蒙脱石为钙 基蒙脱石。对于 *T* 矿区样品(*T*0101), XRD 图谱中没 有蒙脱石存在,但比 *A*01 样品多了伊利石的衍射峰。

图 2 上天梯沸石矿 XRD 图谱 Fig. 2 XRD patterns of zeolite ore obtained from Shangtianti

上天梯沸石矿物组成 XRD 分析见表 2,沸石矿的

主要矿物成分是斜发沸石,其特征峰 20 为 9.81°、 11.13°、17.29°、22.39°、22.71°、28.12°、30.04°等出现 较强的衍射峰。斜发沸石含量范围为20%~85%。蒙 脱石分布不均,在 A 矿区矿石中分布很广(含量为 8%~60%),但在 T 矿区中很少见(少数样含蒙脱石 15%)。其他矿物有长石、方石英、石英、少量伊利石、 高岭石。根据《矿产资源工业要求手册(2014 年修订 版本)》,沸石含量在 46%~65% 为中等矿,沸石含量 >65%的为富矿,结合 XRD 分析可知上天梯的沸石矿 主要以中等矿或中等偏富矿为主要特征。

表2 上天梯沸石矿物相组成分析表

 Table 2
 XRD analysis results of zeolite ore obtained from Shangtianti

矿区	样品	斜发	蒙脱石	长石	方石英	石英	伊利石	高岭石
名称	编号	沸石						
A矿区	A01	75.3	15.3	4.7	3.4	1.4	-	-
	A0201	32.6	8.5	49.7	2	2.5	4.7	-
	A0202	63.1	27.9	3.3	3.1	2.5	-	-
	A0301	68.9	25	2	4.1	-	-	-
	A0302	33.4	33.9	26.4	2.2	1.1	3.1	-
	A0303	28.6	57.9	5.2	3.5	1.5	3.3	-
	A0304	20.2	60.5	10.4	3.3	3.3	2.4	-
T矿区	T0101	48	-	36.9	3.2	5.1	6.8	-
	T0102	54	-	29.4	3.8	1.8	11.1	-
	T0103	84.8	-	6.9	1.9	1.7	4.7	-
	T0104	85.1	-	5.9	2	0.6	3.8	2.6
	T0201	41.4	-	35.7	3.4	4.6	14.9	-
	T0202	58.1	15.5	14.7	3.3	2.3	3.9	2.1
	T0203	76.3	-	6	3	2.2	10.1	2.3
	T0204	80.1	-	5.1	3.6	1.2	7.1	2.8
	T03	32.4	30.6	25.2	2.2	2.3	5.2	2.1
X矿区	X01	43.9	48.6	3.3	2	0.7	1.6	_

2.4 形貌/微区能谱分析

图 3 为典型的沸石矿中斜发沸石的 SEM 图像。 根据文献资料,天然斜发沸石一般为板状、板条状、板 片状及书册状等,集合体多呈平行叠生或格架状^[14]。 根据上天梯样品的 SEM 图可知,上天梯的斜发沸石晶体发育良好,呈现两种形貌,A 矿区、X 矿区斜发沸石 主要为板片状,集合体为平行叠生状,而 T 矿区斜发沸 石为厚板状形貌,集合体为格架状。

图4为T矿区斜发沸石背散射图像及能谱图,表3

图 3 上天梯沸石矿 SEM 图像:(a)A 矿区斜发沸石,(b)T 矿区斜发沸石,(c)X 矿区斜发沸石 Fig. 3 SEM images of zeolite obtained from: (a)A mining field, (b)T mining field, (c)X mining field

为斜发沸石化学成分分析结果。能谱数据(表3)显示 Si元素归一化后平均含量 38.93%,Al 元素含量平均 9.92%。斜发沸石的阳离子以 Ca、K、Mg、Na 为主,且 (Ca+Mg)>(K+Na),能谱分析表明 Ca(Mg)离子超 过所有可交换性阳离子(Ca、K、Mg、Na)的50%,因此 上天梯斜发沸石为 Ca 型斜发沸石。斜发沸石 SiO₂/ Al₂O₃ 摩尔比为 7.6,接近沸石矿原岩的 8.8,综合该沸 石的化学成分特征及 XRD 物相分析结果,可确定该沸 石为斜发沸石。根据斜发沸石的硅铝比可知上天梯斜 发沸石为中硅沸石(SiO₂/Al₂O₃ 为 4~8)。

图4 T 矿区斜发沸石背散射图像(a)及能谱图(b)

Fig. 4 BSE images(a) and EDS spectrum(b) of zeolite obtained from T mining field

表3 斜发沸石化学成分

Table 3	Chemical	composition	analysis	of	clinoptilolite
---------	----------	-------------	----------	----	----------------

元素	Si/%	Al/%	0/%	K/%	Na/%	Ca/%	Mg/%
Spot 1	42.85	10.65	39.34	2.28	0.62	3.16	1.11
Spot 2	36.43	9.46	46.89	1.96	0.36	3.95	0.95
Spot 3	40.43	9.92	42.62	2.13	0.22	4.04	0.65
Spot 4	39.41	10.07	43.40	1.98	0.49	3.59	1.06
Spot 5	40.95	10.19	41.91	2.03	0.64	3.31	0.98
Spot 6	36.20	9.44	47.11	1.87	0.51	3.94	0.93
Spot 7	38.87	9.79	44.62	1.92	0.41	3.26	1.12
Spot 8	36.27	9.83	46.82	1.63	0.53	3.86	1.06
平均	38.93	9.92	44.09	1.97	0.47	3.64	0.98

2.5 矿物自动分析仪分析

(1)矿物组成

AMICS 技术完成的矿物定量识别和鉴定可弥补光 学显微镜等常规的岩矿鉴定手段的不足。选取 T 矿区 代表性沸石矿样品 T - 02 进行 AMICS 分析,其分析结 果见图 5、表 4。T - 02 样品主要由斜发沸石(含量 74.23%)组成,此外,其余矿石矿物组成及含量由多到 少依次为石英(11.74%)、长石(正长石 5.98%、歪长 石 4.14%、斜长石 0.84%、钠长石 0.52%)、高岭石 (1.12%)、铁铝榴石(0.2%)、钛铁矿(0.05%)、磷灰 石(0.01%)、黑云母(0.01%)、金红石(<0.01%)、独 居石(<0.01%)、锆石(<0.01%)、钛铁矿(<0.01%)等 矿物。其中,AMICS 分析发现了铁铝榴石、钛铁矿、磷 灰石、独居石、锆石等未被显微镜分析、XRD 分析准确 表征出的矿物。

图 5 沸石矿(T-02)AMICS分析数据图: (a)沸石矿背散射电子图, (b)沸石矿样品矿物分析 Fig. 5 AMICS analysis of zeolite ore(T-02): (a)BSE images, (b) composition of minerals in zeolite ore

1%

表4 沸石矿(T-02)矿物组成

Table 4 AMICS analysis results of zeolite ore

矿物名称	质量百分比	面积百分比
斜发沸石	74.23	77.4
石英	11.74	10.05
正长石	5.98	5.32
歪长石	4.14	3.66
高岭石	1.12	1.01
斜长石	0.84	0.70
钠长石	0.52	0.44
铁铝榴石	0.20	0.11
钛铁矿	0.05	0.02
磷灰石	0.01	0.01
黑云母	0.01	0.01
金红石	< 0.01	< 0.01
独居石	< 0.01	< 0.01
锆石	< 0.01	< 0.01
黄铁矿	< 0.01	< 0.01
未知矿物	0.65	0.73
低计数率	0.49	0.55
合计	100.00	100.00

(2)主要矿物粒度分布

粒度分布的统计方法采用等效圆法,主要矿物粒 径分布见图 6。结果显示,沸石矿(T-02)样品中,斜 发沸石颗粒90%以上粒径大于150 μm,正长石50% 左 右的颗粒粒径大于100 μm,而石英及歪长石粒径较 细,且在不同粒径范围内分布较为平均。

(3)斜发沸石解离度分析

经筛分获得 + 74 μm、- 74 + 45 μm、- 45 μm 样 品,称量计算三个粒径的样品产率分别为 33.81%、 30.95%、35.24%。斜发沸石的解离情况及连生关系

表6 斜发沸石与其它矿物两相连生关系表

 Table 6
 Clinoptilolite paragenetic relationship with other minerals

图6 主要矿物粒度分布

Fig. 6 Particle size distribution of the dominating minerals in zeolite ore

分别见表 5 及表 6。结果显示:斜发沸石在 +74 μm 完 全单体解离的为 25.02%, -74 +45 μm 完全单体解离 的为 27.99%, -45 μm 完全单体解离的为 56.90%。 随着颗粒粒度的减小,各粒度下斜发沸石单体颗粒的 含量逐渐增多;斜发沸石的连生关系主要以与钾长石、 石英及蒙脱石的两相连生为主。

表5 斜发沸石解离情况表

Table 5 The monomer dissociation degree of clinoptilolite

粒度	+74 μm	$-74 + 45 \ \mu m$	-45 μm
斜发沸石在矿物中所占面积/%	100%(単体)	100%(単体)	100%(単体)
统计颗粒数	3 709	3 939	11 150
分布率/%	25.02	27.99	56.90

矿物名称	钾长石	黑云母	斜长石	磷灰石	石英	钛铁矿	钠长石	蒙脱石	未知矿物	低计数率
连生/%	8.71	0.01	0.33	0.00	7.83	0.02	0.09	7.31	0.87	1.75

3 结论

(1)信阳上天梯沸石矿具变余玻屑凝灰岩质结构、含晶屑凝灰质结构及残余珍珠结构,具备较高

SiO₂/Al₂O₃比。主要矿物斜发沸石呈板片状或厚板状 形态,发育良好,集合体分别呈平行叠生状和格架状。

(2)光学显微镜观测、SEM/EDS、XRD 和 AMICS 等鉴定结果表明,上天梯沸石矿中组成矿相达 25 余 种,主要组成矿物为钙斜发沸石(20%~85%),其次为 蒙脱石、长石(正长石、歪长石、斜长石、钠长石)、方石 英、石英,少量伊利石、高岭石,微量铁铝榴石、钛铁矿、 磷灰石、蛋白石、黑云母、白云母、独居石、锐钛矿、金红 石、玉髓、榍石、锆石及少量不透明矿物黄铁矿、褐铁 矿、钛铁矿等矿物。

(3)斜发沸石颗粒 90% 以上粒径大于 150 μm,在
+74 μm、-74 + 45 μm、-45 μm 的解离度分别为
25.02%、27.99%、56.9%,连生关系主要以与钾长石、
石英及蒙脱石的两相连生为主。

(4)上天梯沸石矿以中等矿或中等偏富矿为主要特征,从沸石含量来看,上天梯沸石矿品质稍逊于浙江 缙云县沸石矿。开发应用前景可借鉴缙云沸石矿,根 据矿石品级开发不同的产品以实现资源的最优化利 用。如高品级沸石矿应用于石油化工类产品,中等矿 用于环保轻工级产品,贫矿应用于水泥制品工业。

参考文献:

- [1] 潘兆橹.结晶学及矿物学.下册 [M].北京:地质出版社,1994.
- [2] 徐如人, 庞文琴, 霍启升. 分子筛与多孔材料化学. 第2版[M]. 北京: 科学出版社, 2015.
- [3] 张雅菱. 天然斜发沸石处理燃煤电厂脱硫废水氨氮试验研究 [D].

长安:长安大学,2018.

- [4] 罗群,蒋定文,侯登勇,等.改性斜发沸石对水中 Sr(Ⅱ)的吸附作用 [J].辐射研究与辐射工艺学报,2019,37(3):16-23.
- [5] 冯启明,李瑾丽. 几种非金属矿尿素缓释肥保肥效果及应用前景 [C]//中国硅酸盐学会非金属矿分会非金属矿产资源高效利用学术 研讨会论文集. 2008:47-48+88.
- [6] 吴奇,陈弘扬,王延智,等. 斜发沸石对辽西半干旱区节水灌溉稻田的 节水减肥效应 [J]. 农业机械学报,2021,52(6):305-313+406.
- [7] 吴承武,牛培培,李平华,等. 斜发沸石对苏淮育肥猪血液生化指标和 肠道形态的影响 [J]. 畜牧与兽医,2020,52(5):39-45.
- [8] R. Ullah. 斜发沸石负载 TiO₂ 用于水中有机染料的高效光催化降解
 [D]. 北京:北京工业大学,2020.
- [9] 李艳民,方庆红,李天宇,等. 沸石/橡胶复合材料的制备与性能 [J]. 沈阳化工学院学报,2009,23(4):340-345.
- [10] 刘伟,刘纯波,张术根,等.浙江缙云壶镇盆地一带沸石矿石矿物特征及物化性能分析 [J].矿物岩石,2007(1):23-29.
- [11] 陈婉君,杨智荣.浙江缙云中生代陆相火山岩沸石矿床地质特征 [J].安徽地质,2006(4):252-256.
- [12] 李赵阳,周文文: 缙云斜发沸石矿床地质特征及应用前景分析 [J]. 西部探矿工程,2019,31(4):137-138+142.
- [13] 柳婷婷,张寿庭.我国沸石资源的分布与开发利用及发展方向 [J]. 中国矿业,2011,20(S1):41-45.
- [14] 孙树文,刘红梅,徐旃章,等.黑龙江省穆棱沸石矿田矿石矿物特征 及物化性能分析[J].地质与勘探,2003(2):40-45.

Process Mineralogy Investigations on Zeolite Ore in Xinyang Shangtianti, Henan

LIU Yi, YAN Chunjie^{*}, YANG Guangming, ZHOU Feng, YE Guangyu, WANG Hongquan, ZHOU Sen, ZHU Xiaoyan

Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China

Abstract: In order to scientific assess and proper utilize the zeolite resources of Xinyang Shangtianti, the mineralogy characteristics of zeolite ore were investigated, using various techniques including microscopic analysis, X – ray diffraction analysis, X – ray fluorescence spectrometer analysis, scanning electron microscope and automatic mineral identification and characterization system. The results show that zeolite ore of Shangtianti has high SiO_2/Al_2O_3 ratio and the mineral species detected in zeolite ore are up to 25. Clinoptilolite is the dominant mineral specie (mineral content ranges from 20% to 80%). The crystals of clinoptilolite are well developed, show plate – like or thick plate – like structure. 90 % of the clinoptilolite crystals'size is greater than 150 μ m. The monomer dissociation degree of clinoptilolite at +74 μ m, -74 + 45 μ m, -45 μ m is 25.02% ,27.99% ,56.9%, respectively, and clinoptilolite has paragenetic relation with orthoclase, quartz and montmorillonite.

Key words: Shangtianti; zeolite ore; clinoptilolite; process mineralogy

引用格式:刘意,严春杰,杨光明,周凤,叶光雨,王洪权,周森,朱小燕.河南信阳上天梯沸石矿工艺矿物学研究[J].矿产保护与利用, 2021,41(6):73-78.

LIU Yi, YAN Chunjie, YANG Guangming, ZHOU Feng, YE Guangyu, WANG Hongquan, ZHOU Sen, ZHU Xiaoyan. Process mineralogy investigations on zeolite ore in Xinyang Shangtianti, Henan[J]. Conservation and utilization of mineral resources, 2021, 41(6): 73-78

投稿网址:http://kcbh. cbpt. cnki. net