某高磷铁矿悬浮焙烧—磁选—浸出提铁降磷实验研究

王绍兴',宁国栋',刘应志',李艳军23

1. 上海逢石科技有限公司,上海 201600;

2. 东北大学资源与土木工程学院, 辽宁 沈阳 110819;

3. 难采选铁矿资源高效开发利用技术国家地方联合工程研究中心, 辽宁 沈阳 110819

中图分类号:TD952.1;TD924 文献标识码:A 文章编号:1001-0076(2024)01-0082-07 DOI: 10.13779/j.cnki.issn1001-0076.2024.01.011

摘要 针对高磷铁矿因铁矿物与磷矿物共生关系复杂、常规选矿方法难以高效利用的特点,提出了焙烧一浸出的提铁降磷技术。对阿尔及利亚 TFe 品位为 60.81%、FeO 含量为 14.92%、P 含量为 0.71% 的某高磷铁矿,采用悬浮焙烧(氧化焙烧一磁化焙烧)一磁选一浸出工艺开展了提铁脱磷实验研究,在氧化温度 1 050 ℃、还原温度 520 ℃、还原时间 25 min、H₂ 体积浓度 50% 的磁化焙烧工艺条件下,获得了 TFe 品位 65.50%、TFe 回收率 96.31%、P 含量 0.16% 的铁精矿指标,磷脱除率 77.46%。实验研究结果可为高磷铁矿提铁降磷提供指导。

关键词 高磷铁矿;氧化焙烧;磁化焙烧;浸出

前言

铁矿是钢铁工业的主要原料,优质、持续稳定且 充足的铁矿是保证钢铁工业持续健康发展的重要基 础。我国铁矿石储量丰富,但资源禀赋差,利用难度 大,且大部分为复杂难选铁矿^[12],对外依存度高,铁矿 供应不足已成为制约国家经济发展的"瓶颈"。

世界高磷铁矿石储量丰富,磷以磷灰石、胶磷矿 等形式存在于铁矿中,铁矿中的磷存在类质同象现象, 铁矿物与含磷矿物的关系复杂^[1-5],采用常规选矿技术 难以获得较好的技术经济指标,部分资源尚未获得大 规模工业化开发利用。为解决铁矿中降磷难的问题, 常采用浮选脱磷、化学脱磷、微生物脱磷、还原脱磷 等^[67]等方法,可获得磷含量 0.2%~0.5%的铁精矿。有 研究表明,对含磷难选铁矿采用磁化焙烧—磁选的方 法处理^[159],可获得 TFe 品位 60% 左右的指标,结合反 浮选、浸出可有效提质降磷^[4-10]。东北大学韩跃新教授 团队对铁矿悬浮磁化焙烧进行深入研究^[11-15],表明悬浮 磁化焙烧处理难选铁矿不仅可获得良好的技术指标, 还具有清洁高效的技术优势。因此,研究难选铁矿悬 浮焙烧—磁选—浸出联合工艺,实现高磷铁矿石的利 用,在技术上实现突破,能缓解优质资源短缺问题。 本文以阿尔及利亚某铁矿为研究对象,采用悬浮 焙烧(氧化焙烧—磁化焙烧)—磁选—浸出工艺考察 氧化温度、还原温度、还原时间、还原气体积浓度对 提铁降磷的影响,为实现含磷铁矿资源化利用提供指 导和方法。

1 矿石性质与实验方法

1.1 矿石性质分析

实验原料取自阿尔及利亚某铁矿,该原料化学多 元素分析结果见表1。

组分	TFe	FeO	SiO_2	Al_2O_3	CaO	MgO	Р	S	烧失量
含量	60.38	14.92	3.72	3.62	1.28	0.42	0.71	0.02	3.31

由表1化学多元素分析结果可知,实验样品TFe 品位为60.81%,FeO含量为14.92%,SiO₂、Al₂O₃、CaO、 MgO含量分别为3.72%、3.62%、1.28%、0.42%;有害 元素P、S含量分别为0.71%、0.02%,属高磷铁矿。

为掌握原料中铁元素的分布,对原料进行铁化学物相分析,分析结果见表2。

通信作者:刘应志(1996一), 男, 硕士研究生, 主要从事难选铁矿资源综合利用等方面研究, E-mail: 1369269452@qq.com。

收稿日期:2023-08-08

作者简介:王绍兴(1989一),男,硕士研究生,主要从事难选铁矿选冶联合等方面研究。

/%

表 2 实验样品铁化学物相分析结果

ľa	ble	2.	Resu	lts o	firon	chemica	l ph	ase	anal	lysis	of	test	t samp	les
----	-----	----	------	-------	-------	---------	------	-----	------	-------	----	------	--------	-----

铁物相	磁性铁 中铁	碳酸铁 中铁	赤/褐铁 中铁	硫化铁 中铁	硅酸铁 中铁	TFe
含量	49.58	0.98	9.77	0.13	0.03	60.38
分布率	82.11	1.62	16.18	0.22	0.05	100.00

表 3 实验样品粒度分析结果

 Table 3
 Particle size analysis results of test samples

由表2铁化学物相分析结果可知,原料中的铁主 要存在于磁铁矿、赤/褐铁矿中,分布率分别为82.11%、 16.18%,碳酸铁矿、硫铁矿、硅酸铁中铁含量较少。

为了解原料粒度组成以及铁、磷分布情况,对原 料进行粒度分析,结果见表3。

/%

Tuble e Tulles	o size analys	is results of	test sumples					
粒级/mm	产率	负累积	TFe品位	TFe分布率	TFe负累积分布率	P含量	P分布率	P负累积分布率
+0.15	13.44	100.00	58.35	12.90	100.00	0.72	13.71	100.00
-0.15+0.074	14.93	86.56	58.64	14.40	87.10	0.78	16.50	86.29
-0.074+0.043	9.10	71.63	55.68	8.33	72.70	0.90	11.60	69.78
-0.043 + 0.038	3.41	62.53	61.27	3.44	64.37	0.86	4.16	58.18
-0.038+0.030	4.87	59.12	62.64	5.02	60.93	0.81	5.59	54.02
-0.030	54.24	54.24	62.67	55.91	55.91	0.63	48.42	48.42
合计	100.00		60.81	100.00		0.71	100.00	

由表 3 粒度分析结果可知,随着粒度越细, TFe 品 位增加, TFe 分布率增加, 而在-0.030 mm 粒级 P 含量 小于原料的 0.71%。结果表明, 粒度越细, 铁矿物解离 度越大, 磷含量越低, 有利于磁选提铁降磷。

1.2 实验方法

实验过程如图1所示。取30g原料置于悬浮焙烧炉中开展氧化焙烧—还原焙烧—磁选—浸出单因 素实验;氧化焙烧破晶格,改变磁铁矿、赤/褐铁矿的 晶型,将类质同象中的磷释放,还原焙烧—磁选提高 铁品位,浸出脱除铁精矿中磷。原料置于悬浮焙烧炉中首先通入空气进行氧化焙烧,然后采用氮气排尽空气,再进行还原焙烧,焙烧结束后,通氮气将焙烧产品冷却至室温,对焙烧产品在磨矿细度-0.030 mm 含量95%条件下,采用0.11 T的磁场强度进行弱磁选实验,磁选精矿采用脱磷效果良好的硫酸¹⁰⁰进行酸浸脱磷实验,浸出实验稀硫酸浓度为0.2 mol/L、液固比20:1、浸出时间50 min、搅拌方式为机械搅拌。最后化验不同阶段产品的铁含量和磷含量,计算铁回收率、磷脱除率。

图1 实验过程示意图

Fig. 1 Schematic diagram of the test process

2 实验结果与讨论

2.1 氧化温度对工艺指标的影响

在氧化焙烧过程中矿物发生矿相转变,矿石中磁铁矿、赤/褐铁矿等氧化为赤铁矿,同时影响矿石中含磷矿物的赋存状态¹¹⁶。因此,在氧化时间 5 min、空气

流速 600 mL/min, 氧化产品在还原温度 520 ℃、还原时间 30 min、H₂体积浓度 50%条件下,考察氧化温度对选别产品指标的影响,实验结果见图 2。

由图 2(a) 可知, 原料未经氧化直接还原, 获得的 磁选精矿 TFe 品位 65.40% 明显高于氧化后, 回收率 反之, 氧化致使矿物颗粒产生孔洞, 因而在还原阶段 气固接触充分, 还原更充分。随着氧化温度提高, 磁

选精矿的 TFe 品位、回收率变化不明显; 磁选精矿经 浸出后, TFe 品位随着氧化温度增加而影响不大, TFe 回收率随着氧化温度增加而先增加后降低再趋于平 缓, 氧化焙烧后矿物孔隙度增加, 使酸与铁矿接触面 增加, 致使部分铁矿物溶解。由图 2(b) 可知, 随着氧 化温度由 0℃增加至 1 000℃及以上, 磁选精矿的 P 含量由 0.53%增加至 0.59%, 经浸出后, 随着氧化温度 由 0℃增加至 1 100℃, 浸出精矿的 P含量由 0.42% 降至 0.13%, 由于氧化温度增加, 矿物晶格充分转变, 磷得到有效释放^{III}, 进而促进酸浸脱磷。综合考虑指 标, 确定 1 050℃ 为适宜的氧化温度, 此时可获得 TFe 品位 65.84%、P含量小于 0.2% 的铁精矿。

2.2 还原温度对工艺指标的影响

还原温度是影响矿相转化的重要因素之一。因此,对原料在氧化温度1050 ℃、氧化时间 5 min 条件

2.3 还原时间对工艺指标的影响

还原时间表征化学反应时间,间接反映了矿物还 原程度,是焙烧过程的重要影响因素之一。因此,对 原料在氧化温度1050℃、氧化时间5min条件下先

下先进行氧化焙烧,再在还原时间 30 min、H₂体积浓 度 50%、总气体流速 600 mL/min 条件下,考察还原温 度对工艺指标的影响,实验结果见图 3。

由图 3(a) 可知, 还原温度在 460~560 ℃, 磁选精 矿 TFe 品位受还原温度影响不大, TFe 回收率则随着 焙烧温度增加而增加, 磁选精矿浸出后, 随着还原温 度增加, TFe 品位增加, TFe 回收率降低。还原温度升 高, 铁矿物充分还原为强磁性磁铁矿在磁选中被回收, 还原温度过高, 进而出现少量酸溶性浮士体 (FeO)^[18] 损失于浸出作业。由图 3(b) 可知, 随着还原温度增加, 磁选精矿的 P 含量增加, 浸出精矿的 P 含量降低, 磷 元素随着磁性铁矿物迁移, 进而在酸浸中溶解。实验 结果表明, 还原温度升高对磁选铁回收具有促进作用, 但不利于浸出作业铁回收。综合考虑指标, 确定 520 ℃ 为适宜的还原温度, 此时可获得 TFe 品位 65.81%、P 含量 0.17% 的铁精矿。

进行氧化焙烧, 然后在还原温度 520 ℃、H₂ 体积浓度 50%、总气体流速 600 mL/min 条件下, 考察还原时间 对工艺指标的影响, 实验结果见图 4。

由图 4(a) 可知, 还原时间增加, 磁选精矿 TFe 回 收率呈现先增加后降低的趋势, 而 TFe 品位影响较小,

图 4 还原时间对选别产品影响 **Fig. 4** Effect of reduction time on products

还原时间长新生磁铁矿的量越大,回收率高¹⁰;磁选精 矿经浸出后,TFe 品位总体提升 1~2 百分点,TFe 回收 率随还原时间增加而降低,这是可溶性杂质及铁溶解 所致。由图 4(b)可知,还原时间增加,浸出精矿的 P 含量降低 0.02 百分点。综合考虑指标,确定 30 min 为 适宜的还原时间,此时可获得 TFe 品位 65.86%、P 含 量小于 0.17% 的铁精矿。

2.4 还原气体体积浓度对工艺指标的影响

还原气体体积浓度影响气体分子与矿物接触概率,进而影响还原效果。因此,对原料在氧化温度1050 ℃、氧化时间5min条件下先进行氧化焙烧,再在还原

图 5 还原气体积浓度对选别产品影响 Fig. 5 Effect of reducing gas concentration on products

2.5 焙烧产品磨矿细度条件实验

磨矿细度影响矿物解离程度。因此,对原料在氧 化温度1050℃、氧化时间5min条件下进行氧化焙 烧,在还原温度520℃、还原时间30min、H₂体积浓 度50%、总气体流速600mL/min条件下,考察焙烧产 品磨矿细度对工艺指标的影响,实验结果见图6。

由图 6(a) 可知, 随着焙烧产品磨矿细度增加, 磁选精矿 TFe 品位变化不明显, TFe 回收率降低, 浸出精

温度 520 ℃、还 原 时 间 30 min、总 气 体 流 速 600 mL/min 条件下,考察 H₂体积浓度对工艺指标的影响, 实验结果见图 5。

由图 5(a) 可知, H₂体积浓度增加, 磁选精矿 TFe 品位由 64.13% 增加至 64.95%, 回收率由 94.72% 提高 至 98.43%, 磁选精矿经浸出后, TFe 品位有所增加, 但 随着 H₂体积浓度增加至 70%, TFe 回收骤降至 84.19%。 因 H₂体积浓度增加可以使气固接触充分, 加速新生 磁铁矿生成, 进一步则会被还原为酸易溶的浮士体^[18]。 由图 5(b) 可知, 磁选精矿的 P 含量随着 H₂体积浓度 增加而增加, 经浸出后, 精矿的 P 含量将至 0.16%。综 合考虑指标, 确定 50% 为适宜的 H₂体积浓度, 此时可 获得 TFe 品位 65.82%, P 含量 0.16% 的铁精矿。

矿 TFe 回收率略有增加。由图 6(b) 可知,随着磨矿细 度增加,磁选精矿 P 含量降低,而浸出精矿 P 含量变 化不显著,磨矿细度对浸出脱磷影响较小。综合考虑 指标,确定-0.038 mm 含量 60% 为适宜的磨矿细度, 此时可获得 TFe 品位 65.60%、P 含量 0.16% 的铁精矿。

2.6 全流程实验

为考察验证磁化焙烧--磁选--酸浸工艺提铁降

图 7 全流程实验结果 Fig. 7 Result of full-flow test

• 86 •

磷的效果,在"氧化温度 1050 ℃、还原温度 520 ℃、 还原时间 25 min、H₂体积浓度 50%,磨矿细度-0.038

表 4 产品化学组成分析结果/%Table 4 Results of chemical composition analysis of products

名称	TFe	FeO	${\rm SiO}_2$	Al_2O_3	CaO	MgO	Р	S	烧失量
焙烧产品	62.92	25.02	3.84	3.65	1.40	0.27	0.74	0.019	0.29
磁选精矿	63.65	26.31	3.75	3.67	1.16	0.32	0.69	0.006	0.38
浸出精矿	65.50	24.39	3.78	3.51	0.12	0.25	0.16	0.002	0.32

	_		_				
产品	铁物相	磁性铁 中铁	碳酸铁 中铁	赤/褐铁 中铁	硫化铁 中铁	硅酸铁 中铁	TFe
焙烧产品	含量	61.77	0.31	0.06	0.23	0.37	62.92
	分布率	98.17	0.49	0.10	0.37	0.59	100.00
磁选精矿	含量	62.64	0.26	0.06	0.25	0.37	63.65
	分布率	98.41	0.41	0.09	0.39	0.58	100.00

mm 含量 60%" 最佳条件下开展了全流程实验, 全流 程实验结果见图 7, 主要产品化学成分分析结果、铁 物相分析以及 XRD 分析结果分别见表 4、表 5、图 8。

图8 焙烧前后产品 XRD 分析结果

Fig. 8 XRD patterns of the raw ore before and after roasting

由图 7 可知, 原矿经悬浮氧化焙烧—磁化焙烧方 法处理, 铁精矿 TFe 品位提升至 62.92%, 有害元素 P 含量增加至 0.71%, 这是焙烧过程中结晶水蒸发以及 还原脱氧所致, 焙烧产品经磨矿—磁选工艺处理, 磁 选精矿 TFe 品位提升 0.73 百分点, 此时有害元素 P 含 量降至 0.63%, 这是因为磁选过程抛除了部分解离的 含磷弱磁性矿物。磁选精矿通过硫酸浸出脱磷, 浸出 精矿 TFe 品位提升至 65.50%, TFe 酸浸损失率仅为 2.12%, 磁选精矿中 P 含量降至 0.16%, 磷脱除率达 77.46%。由此可知, 通过氧化焙烧—磁化焙烧—磨矿— 磁选—浸出工艺可实现阿尔及利亚高磷铁矿的提铁 降磷。

由表4可知, 焙烧产品经磁选后, TFe、FeO分别 提高至63.58%、26.31%, SiO₂、CaO、S含量有所降低, 而Al₂O₃、MgO含量基本不变, 这主要是杂质矿物嵌 布细未解离而未能抛除, 磁选精矿经浸出后, 精矿 TFe品位为65.44%, FeO下降至24.39%, Al₂O₃、CaO 分别降至3.51%、0.12%, P则降低至0.16%, 达到高炉 炼铁磷含量标准, 而SiO₂、MgO含量基本不变, 硫酸 浸出导致磷及部分酸易溶物质溶解。

由表 5 可知, 焙烧产品中的铁主要以磁性铁的形 式存在, 铁含量为 61.77%, 分布率为 98.17%, 相较于 表 2 的原料铁物相分析结果, 磁性铁中铁含量增加明 显, 赤/褐铁中铁降低至 0.06%, 说明矿石中赤/褐铁矿 在悬浮磁化焙烧中发生还原, 还原为磁铁矿; 磁选精 矿 以磁性铁中铁为主, 铁含量 62.64%, 分布率为 98.41%, 说明铁矿物进一步得到富集。

由图 8 焙烧前后产品的 XRD 图谱可知, 原料经 悬浮磁化焙烧后, 可清晰地发现赤铁矿转化磁铁矿; 但有害矿物磷灰石依然存在, 这主要是在低温环境下 磷灰石不发生转化反应^[6]。

3 结论

阿尔及利亚某高磷铁矿 TFe 品位为 60.81%, 铁矿 物以磁铁矿为主, 有害元素 P 含量为 0.71%, 属典型高 磷铁矿。原矿在预氧化温度1 050 ℃、还原温度 520 ℃、还原时间 25 min、H₂体积浓度 50%、总气体流速 600 mL/min 条件下进行氧化焙烧—还原焙烧, 焙烧产 品 经磨矿—磁选—浸出, 可获得 TFe 品位 65.50%、 TFe 回收率 96.31%、P 含量 0.16% 的铁精矿, 磷脱除 率达 77.46%。实验研究结果可为阿尔及利亚铁矿高 效提铁降磷提供指导。

参考文献:

[1] 白春霞, 李宏静. 高磷鲕状赤铁矿脱磷选矿工艺现状分析[J]. 现代 矿业, 2021, 37(1): 117-119+125.

BAI C X, LI H J. Research status analysis of dephosphorization mineral processing of high phosphorus oolitic hematite[J]. Modern Mining, 2021, 37(1): 117–119+125.

- [2] 丁湛,文书明,李春龙,等.铁矿石脱磷硫工艺现状及同步脱除新 方法[J].矿产综合利用,2020,3(3):56-62+32.
 DING Z, WEN S M, LI C L, et al. Current status of iron ore dephosphorization and desulphurization process and a new method for simultaneous removal[J]. Multipurpose Utilization of Mineral Resources, 2020, 3(3): 56-62+32.
- [3] 许言,孙体昌,杨志超,等.尼日利亚某高磷铁矿石工艺矿物学研究[J].中国矿业,2012,21(4):89-93.
 XU Y, SUN T C, YANG Z H, et al. Process mineralogy study on some high phosphorous iron ore in Nigeria[J]. China Mining Magazine, 2012, 21(4):89-93.
- [4] 刘东泉,李文博,韩跃新,等. 阿尔及利亚某高磷鲕状赤铁矿工艺 矿物学研究[J]. 矿冶工程, 2020, 40(4): 65-68+74.
 LIU D Q, LI W B, HAN Y X, et al. Process mineralogy of high-phosphorus oolitic hematite from Algeria[J]. Mining and Metallurgical Engineering, 2020, 40(4): 65-68+74.
- [5] 齐冰力,路明,何志军,等. SiO₂对高磷鲕状赤铁矿碳热还原过程中 铁磷物相转变规律研究[J].矿产保护与利用, 2022, 42(5): 95-103. QI B L, LU M, HE Z J, et al. Study on phase transformation of iron and phosphorus by SiO₂, during carbon thermareduction of high-phosphorus oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 95-103.
- [6] 吴世超, 孙体昌, 寇珏, 等. 组合脱磷剂对高磷铁矿还原焙烧-磁选的影响[J]. 东北大学学报(自然科学版), 2022, 43(3): 423-430.
 WU S C, SUN T C, KOU J, et al. Effects of combined dephosphorization agents on reduction roasting-magnetic separation of high phosphorus iron ore[J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 423-430.
- [7] XU C Y, SUN T C, KOU J, et al. Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2806–2812.
- [8] 吴世超,孙体昌,寇珏. CaCO₃和Na₂CO₃在高磷鲕状铁矿氧化焙烧-气基还原中的作用[J].中南大学学报(自然科学版), 2022, 53(4): 1157-1166.
 - WU S C, SUN T C, KOU J. The function of CaCO₃ and Na₂CO₃ in the oxidation roasting and gas-based reduction forhigh phosphorus oolitic iron ore[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1157–1166.
- [9] 吴世超,高瑞琢,孙体昌,等.某高磷铁矿氧化焙烧-气基还原-磁选研究[J]. 矿产综合利用. 2024, 45(1): 144-148 doi: 10.3969/j.issn.1000-6532.2024.01.018.
 WU S C, GAO R Z, SUN T C, et al. Study on oxidation roasting,

gas-based reduction followed bymagnetic separation of ahigh phosphorus Iron ore [J]. Multipurpose Utilization of Mineral Resources. 2024, 45(1): 144–148 doi: 10.3969/j.issn.1000-6532.2024.01.018.

- [10] 李育彪, 龚文琪, 辛桢凯, 等. 鄂西某高磷鲕状赤铁矿磁化焙烧及 浸出除磷试验[J]. 金属矿山, 2010, 5(5): 64-67.
 LI Y B, GONG W Q, XIN Z Q, et al. Research on magnetic roasting and leaching dephosphorization of high-phosphorus oolitie hematite in Western Hubei[J]. Metal Mine, 2010, 5(5): 64-67.
- [11] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 1–9.
- [12] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H₂ followed by magnetic separation[J]. Resources Conservation and Recycling, 2021, 172: 1–10.

- [13] YUAN S, WANG R F, GAO P, et al. Suspension magnetization roasting on waste ferromanganese ore: a semi-industrial test for efficient recycling of value minerals[J]. Powder Technology, 2022, 396: 80-91.
- [14] YUAN S, ZHOU W T, HAN Y X, et al. Efficient enrichment of low-grade refractory rhodochrosite by preconcentration-neutral suspension roasting-magnetic separation process[J]. Powder Technology, 2020, 361: 529–539.
- [15] ZHANG X L, HAN Y X, SUN Y S, et al. Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot-scale study[J]. Powder Technology, 2019, 352: 16–24.
- [16] CHENG C Y, MISRA V N, CLOUGH J, et al. Dephosphorisation of western Australian iron ore by hydrometallurgical process[J]. Minerals Engineering, 1999, 12(9): 1083–1092.
- [17] WU S, SUN T, KOU J, et al. A new iron recovery and dephosphorization approach from high-phosphorus oolitic iron ore via oxidation roasting-gas-based reduction and magnetic separation process[J]. Powder Technology, 2023, 413: 1–15.
- [18] SUN Y, ZHANG X, HAN Y, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot-scale study[J]. Powder Technology, 2020, 361: 571–580.

Dephosphorization of a High-phosphorus Iron Ore by Magnetic Roasting-leaching Process

WANG Shaoxing¹, NING Guodong¹, LIU Yingzhi¹, LI Yanjun²³

1. Shanghai Milestone Technology Co., Ltd., Shang Hai 201600, China;

2. School of Resources and Civil Engineering, Northeast University, Shenyang 110819, China;

3. National-local Joint Engineering Research Center of High-efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, China

Abstract: In response to the characteristics of high-phosphorus iron ore, which the complex symbiotic relationship between iron minerals and phosphate minerals in high-phosphorus iron ore and the difficulty in efficient utilization through conventional beneficiation methods. The roasting -leaching technology for iron extraction and phosphorus reduction was proposed with a view to achieving efficient utilization of high-phosphorus iron ore. This paper investigated a high-phosphorus certain iron ore with a TFe grade 60.81%, FeO content14.92%, and P content 0.71% extracted from Algeria. The experimental study on iron extraction and dephosphorization was carried out by oxidizing roasting-magnetization roasting-magnetic separation-leaching process. The magnetic roasting process conditions of oxidation temperature 1 050 °C, reduction time 25 min and H₂ concentration 50% were determined. The iron concentrate indexes of total Fe grade 65.50%, total Fe recovery 96.31% and P content 0.16% were obtained, which 77.46% of P removed. The experimental results offer guidance for iron extraction and dephosphorization of iron ore in Algeria. **Keywords:** high-phosphorus iron ore; oxidizing roasting; magnetic roasting; leaching

引用格式:王绍兴,宁国栋,刘应志,李艳军. 某高磷铁矿悬浮焙烧一磁选一浸出提铁降磷实验研究[J]. 矿产保护与利用, 2024, 44(1): 82-88.
WANG Shaoxing, NING Guodong, LIU Yingzhi, LI Yanjun. Dephosphorization of a high-phosphorus iron ore by magnetic roasting-leaching process[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 82-88.

投稿网址: http://kcbhyly.xml-journal.net

E-mail: kcbh@chinajoumal.net.cn